Grüner Wasserstoff aus der Natur:

Symbolbild zum Artikel. Der Link öffnet das Bild in einer großen Anzeige.
Dr.-Ing. Pablo Jiménez Calvo

Interview mit Werkstoffwissenschaftler Pablo Jiménez Calvo

Grüner Wasserstoff könnte eine Schlüsselrolle in der Energiewende spielen. Die elektrokatalytische Aufspaltung von Wasser in Wasserstoff und Sauerstoff erfordert jedoch sehr viel Strom, wodurch der Wirkungsgrad der Energieumwandlung – vor allem im Vergleich zu fossilen Quellen – sehr gering ist.

Der Materialwissenschaftler Dr. Pablo Jiménez Calvo, Marie-Sklodowska-Curie-Postdoktorand am Lehrstuhl für Korrosion und Obrflächentechnik, forscht an einer alternativen Methode: der Photokatalyse.

Herr Dr. Jiménez Calvo, was ist Photokatalyse?

Die Photokatalyse nutzt Sonnenlicht als Aktivierungsenergie für chemische Umwandlungen. Vorbild ist die Photosynthese, bei der Wasser und Kohlendioxid mithilfe von Chlorophyll in einem einzigen Schritt in Glukose und Sauerstoff umgewandelt werden.

Das Faszinierende an der Photokatalyse ist ihre Einfachheit: Sie erfordert nur Licht, einen Katalysator und Wasser. Das Prinzip der photokatalytischen Wasserspaltung wurde bereits 1972 in einer bahnbrechenden Veröffentlichung von Honda und Fujishima nachgewiesen.

Unsere Idee ist, dieses Konzept weiterzuentwickeln und dabei Materialien auf Kohlenstoffbasis zu nutzen, die prinzipiell preiswerter, ungiftig und leicht skalierbar sind.

Wasserstoff wird überwiegend mit dem Betrieb von Brennstoffzellen in Verbindung gebracht, allerdings kann er wie jeder andere gasförmige Brennstoff auch zur Wärmeerzeugung in einem Heizkessel oder als Treibstoff in Verbrennungsmotoren von Autos genutzt werden.

Die derzeitige Strategie sieht vor, Sonnenenergie zur Stromerzeugung zu nutzen und mit diesem Strom dann Wasserstoff elektrokatalytisch herzustellen. Was ist an Ihrem Konzept besser?

Die Aufspaltung von Wasser in Wasserstoff und Sauerstoff ist sehr energieintensiv, deshalb wird grüner Wasserstoff vorzugsweise dort hergestellt, wo erneuerbare Energien gut verfügbar sind. Aus diesem Grund sind afrikanische Länder vielversprechende Standorte für große Photovoltaik-Technologieparks.

Der Transport von Wasserstoff über große Entfernungen kann jedoch sowohl aus geopolitischer als auch aus ökologischer Sicht problematisch sein. Der zweite Nachteil der vermeintlich idealen Elektrokatalyse besteht darin, dass zwei getrennte Systeme erforderlich sind: eine Photovoltaikanlage zur Stromerzeugung und ein Elektrolyseur zur Wasserspaltung.

Ich erforsche Alternativen an der Schnittstelle von Materialwissenschaften und Verfahrenstechnik. Bereits als Postdoktorand am Centre national de la recherche scientifique (CNRS) im französischen Orsay habe ich die Konstruktion eines neuartigen kompakten Reaktors geleitet, der eine höhere Quantenausbeute und Wasserstoffrate aufweist als Reaktoren in früheren Studien.

In der Materialentwicklung konzentriere ich mich hauptsächlich auf Kohlenstoffnitride, möchte aber im Rahmen meines Marie-Curie-Projekts weitere Funktionsmaterialien für verschiedene Modellreaktionen vorschlagen. Dazu gehören modifizierte Synthesebedingungen, die Verankerung von bi-, monometallischen und molekularen Katalysatoren auf der Oberfläche und die Kopplung mit Oxidhalbleitern zur Erzeugung von Heteroübergängen.

Sie sagten, Vorbild für Ihr Konzept sei die Photosynthese. Überspitzt gefragt: Reichen künstliche Blätter, um Deutschland mit Wasserstoff zu versorgen?

Wir sollten die Effizienz von Pflanzen nicht unterschätzen. Für die Herstellung von Glukose wird ähnlich viel Energie benötigt wie für die Spaltung von Wasser: 1,24 gegenüber 1,23 Elektronenvolt. Das Prinzip funktioniert, die Frage ist nur, welche Effizienzschwelle erreicht werden kann und wie die Systeme skaliert werden können, um den Bedarf eines Industrielandes wie Deutschland zu decken.

Wie ist der aktuelle Entwicklungsstand? Diskutieren wir noch über erste Ideen oder gibt es bereits Pilotprojekte?

Die Entwicklung ist weit fortgeschritten. In der Wiley-Zeitschrift „Global Challenges“ habe ich kürzlich zusammen mit einem internationalen Autorenteam drei photokatalytische Systeme vorgestellt, die in Asien und Europa getestet werden. Das bereits erwähnte französische Projekt – der kompakte Edelstahlreaktor – befindet sich im Labormaßstab, bei den beiden anderen handelt es sich um Pilotanlagen.

Die erste Anlage, die derzeit im spanischen Almeria getestet wird, besteht aus einem Parabolkollektor, der kommunale Abwässer zur Wasserstofferzeugung nutzt. Dieser Ansatz ist besonders interessant, da er die Erzeugung von grüner Energie mit der Abwasseraufbereitung verbindet.

Die zweite Pilotanlage wurde an der Universität Tokio entwickelt: ein Paneelsystem mit 1600 Katalysatoreinheiten und einer Fläche von einhundert Quadratmetern. Dieses Konzept beweist, dass Photokatalyse-Module bereits in größerem Maßstab eingesetzt werden können.

Können wir in naher Zukunft mit einer breiten Anwendung rechnen?

So weit sind wir leider noch nicht. Auch wenn die vorgestellten Systeme grundsätzlich funktionieren und seit einigen Monaten stabil laufen, sprechen wir derzeit von einem Wirkungsgrad von etwa einem Prozent. Das ist natürlich noch zu wenig – das Ziel ist eine Wasserstoff-Produktionseffizienz zwischen fünf und zehn Prozent.

Wir brauchen ein verbessertes Reaktordesign und eine Prozessoptimierung, aber vor allem brauchen wir effizientere Katalysatoren. Hier spielen die Materialwissenschaften eine entscheidende Rolle, und eine beträchtliche Anzahl von Forschenden trägt aktiv zu Fortschritten auf diesem Gebiet bei.

Wo liegen aktuell die größten Herausforderungen?

Photokatalysatoren müssen zwei zentrale Aufgaben erfüllen: Erstens müssen sie ein breites Spektrum von Sonnenlicht absorbieren und möglichst viele angeregte Elektronen und positive Löcher freisetzen. Leider haben diese Elektronen-Loch-Paare die Tendenz zur Rekombination.

Der zweite Schritt, die eigentliche chemische Reaktion, passiert an der Oberfläche – in unserem Fall an der Grenzfläche zwischen Katalysator und Wasser: Hier finden verschiedene Halbreaktionen statt, bei denen Elektronen abgegeben und aufgenommen werden.

Die aktuelle Forschung konzentriert sich auf diesen Grenzflächenkontakt zwischen Katalysator und Reaktionsmedium mit ausgeklügelten Materialstrategien.

Welche Strategien sind besonders erfolgversprechend?

Es gibt verschiedene Ansätze:

  • Bei dem japanischen Paneelsystem wurde jede Tafel mit aluminiumdotiertem Strontiumtitanat besprüht, einem der aktuell effizientesten Photokatalysatoren. Die Wasserstoff-Abscheidung erfolgt an einer Membran aus Polyimid.
  • Die Kollegen in Spanien testen eine Verbindung aus Titanoxid und Stickstoff und eine weitere aus Cadmium, Zink und Schwefel – jeweils in Kombination mit Platin.
  • Ich selbst forsche an Materialien auf der Basis von Kohlenstoffnitrid, die mit kleinen anorganischen Verbindungen modifiziert sind. Mit solchen Antennen lassen sich herkömmliche Materialien für eine Vielzahl von Anwendungen funktionalisieren. Ein konkretes Beispiel ist lokale Dotierung mit Purpald, einer Schwefelvorstufe, was zu einer hybriden Kohlenstoff-Stickstoff-Schicht führt. Im Vergleich zu reinem Kohlenstoffnitrid weist diese Kombination verbesserte optische, elektronische, strukturelle und morphologische Eigenschaften auf.

Ihr Marie-Curie-Projekt führt Sie zu einem zweijährigen Forschungsaufenthalt nach Erlangen. Warum haben Sie sich für die FAU entschieden?

Die FAU ist eine der weltweit führenden Universitäten in den Bereichen Materialwissenschaften und Chemieingenieurwesen. Erlangen pflegt eine einzigartige Innovationskultur, und der Universitätscampus ist umgeben von führenden Forschungseinrichtungen wie Max-Planck-, Helmholtz- und Fraunhofer-Instituten. Das macht die FAU zu einem idealen Ort, um wissenschaftliche Partnerschaften zu pflegen und gleichzeitig innovative Materialforschung zu betreiben.

Ich denke, die FAU ist ein großartiges technisches Zentrum, an dem ich meine Forschung vorantreiben und die Ziele der Europäischen Kommission – Mobilität und Vernetzung – weiter fördern kann.

Weitere Informationen

Dr. Pablo Jiménez Calvo
pablo.jimenez.calvo@fau.de